Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xian-Ming Zhang,^a Rui-Qin Fang,^a Hai-Shun Wu^a and Seik Weng Ng^b*

^aSchool of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.004 Å R factor = 0.040 wR factor = 0.120 Data-to-parameter ratio = 16.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Zwitterionic diaqua(1,10-phenanthroline)-[3-phosphonopropionato(2–)]zinc(II) dihydrate

In the crystal structure of the title compound, [Zn $(C_{12}H_8N_2)(C_3H_5O_5P)(H_2O)_2$]·2H₂O, the zinc atom is fivecoordinate in a trigonal bipyramidal N₂O₃Zn environment; the apical sites are occupied by the aqua ligand and the N atom of the heterocycle. Hydrogen bonds link the zwitterions and lattice water molecules into a three-dimensional network motif. Received 3 June 2004 Accepted 4 June 2004 Online 12 June 2004

Comment

An earlier study described the centrosymmetric dinuclear Cu derivative of 3-phosphonopropionic acid, $[(C_{12}H_8N_2)(C_5H_3 O_5P$)(H₂O)Cu]₂, in which the dianionic group, $^{-}OP(O)(OH) - CH_2 - CH_2CO_2^{-}$, is bonded to two Cu atoms (Zhang et al., 2003). The attempted synthesis of the zinc analog led to the a mononuclear compound (I). The phosphato group uses only one end to bond; the negative charge of the anion formally resides at the carboxy $-CO_2$ end, which engages in hydrogen-bonding interactions (Table 2). The Zn atom exhibits a trigonal bipyramidal coordination; the apical sites are occupied by a water ligand and by an N atom of the N-heterocycle. The $Zn-N_{apical}$ distance is marginally longer than the $Zn-N_{axial}$ distance.

Experimental

Zinc diacetate dihydrate (0.22 g, 1.2 mmol), trimethyl 3-phosphonopropionate (0.23 g, 1 mmol), 1,10-phenanthroline (0.20 g, 1 mmol) and water (7 ml) were placed in a 15 ml Teflon-lined stainless-steel bomb, which was then heated at 423 K for 96 h. The bomb was cooled slowly to room temperature and colorless block-like crystals were isolated in about 65% yield. CH&N analysis. Found: C 38.31, H 4.55, N 5.90%; Calc. for $C_{15}H_{21}N_2O_9PZn$: C 38.36, H 4.51, N 5.96%.

Crystal data

$[Zn(C_{12}H_8N_2)(C_3H_5O_5P)-$	$D_x = 1.626 \text{ Mg m}^{-3}$
$(H_2O)_2]\cdot 2H_2O$	Mo $K\alpha$ radiation
$M_r = 469.68$	Cell parameters from 4886
Monoclinic, C2/c	reflections
a = 24.991 (1) Å	$\theta = 2.4-27.0^{\circ}$
b = 7.3516 (4) Å	$\mu = 1.42 \text{ mm}^{-1}$
c = 20.958 (1) Å	T = 298 (2) K
$\beta = 94.679 \ (1)^{\circ}$	Block, colorless
V = 3837.5 (4) Å ³	$0.22 \times 0.20 \times 0.16 \text{ mm}$
7 - 8	

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Data collection

Bruker SMART APEX area-	4145 independent reflections
detector diffractometer	3578 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.020$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.0^{\circ}$
(SADABS; Bruker, 2002)	$h = -26 \rightarrow 31$
$T_{\min} = 0.619, T_{\max} = 0.805$	$k = -9 \rightarrow 9$
10830 measured reflections	$l = -26 \rightarrow 19$
-	
Refinement	

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.120$ S = 1.044145 reflections 254 parameters H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0743P)^2]$ + 3.8716P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ -3 $\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}$ $\Delta \rho_{\rm min} = -0.69 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Zn1-O1	1.935 (2)	Zn1-N1	2.091 (2)
Zn1-O1w	2.000 (2)	Zn1-N2	2.137 (2)
Zn1-O2w	2.027 (2)		
O1-Zn1-O1w	93.9 (1)	O1w-Zn1-N1	91.6 (1)
O1-Zn1-O2w	113.2 (1)	O1w-Zn1-N2	163.5 (1)
O1-Zn1-N1	113.9(1)	O2w-Zn1-N1	132.9 (1)
O1-Zn1-N2	102.2 (1)	O2w-Zn1-N2	90.7 (1)
O1w - Zn1 - O2w	86.0 (1)	N1-Zn1-N2	78.8 (1)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$O2-H2o\cdots O3^{i}$	0.82	1.76	2.553 (3)	161
$O1w - H1w1 \cdots O5^{ii}$	0.84	1.66	2.471 (3)	163
$O1w - H1w2 \cdots O3w$	0.82	2.20	2.718 (4)	121
$O2w - H2w1 \cdots O3^{iii}$	0.85	1.81	2.647 (3)	169
$O2w - H2w2 \cdots O4^{ii}$	0.85	1.93	2.772 (3)	173
$O3w - H3w1 \cdots O4w$	0.89	2.04	2.702 (8)	130
$O4w - H4w1 \cdots O1w^{iii}$	0.86	2.21	2.764 (4)	122

Symmetry codes: (i) $\frac{1}{2} - x$, $\frac{3}{2} - y$, 1 - z; (ii) $\frac{1}{2} - x$, $y - \frac{1}{2}$, $\frac{3}{2} - z$; (iii) x, y - 1, z.

The vibration of the lattice water molecules was restrained to be approximately isotropic.

Water H atoms were placed at chemically sensible positions and their U(H) values were were set to $1.2U_{eq}$ (parent O atom). The H atom of the PO3 group and the carbon-bound H-atoms were placed at

Figure 1

ORTEPII (Johnson, 1976) plot of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.

calculated positions (O-H 0.82, C-H_{aliphatic} 0.97, C-H_{aromatic} 0.93 Å) and refined as riding, with $U(H) = 1.2U_{eq}(C)$. The torsion angle was refined for the hydroxyl group bonded to P.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank Shanxi Normal University and the University of Malaya for generously supporting this study.

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Zhang, X.-M., Fang, R.-Q., Wu, H.-S. & Ng, S. W. (2003). Acta Cryst. E59, m149-m150.